Agencias / MonitorSur, Ciudad de México.- La madrugada del pasado domingo, 4 de noviembre, apareció una impresionante bola de fuego en los cielos del sureste de Castilla-La Mancha. El fenómeno pudo verse desde lugares tan distantes como Almería, Albacete y Sierra Nevada, y en algunos puntos el destello fue tan intenso que por un momento pareció que se hacía de día. Unas 24 horas antes se registró un fenómeno similar, cuando se detectó otro intenso destello en Toledo. En aquella misma noche, algo parecido se observó en varias cámaras situadas muy lejos de allí, en los estados de Arkansas y Alabama (Estados Unidos).
El primer fenómeno se registró a las 0:46 horas de la madrugada del 3 de noviembre, cuando “una bola de fuego más brillante que la Luna llena sobrevoló el sur del país y su luminosidad fue tan inusualmente grande que en el sureste de España la noche se convirtió en día por un instante”, ha destacado Astrohita.
A pesar de las nubes que cubrían parte del cielo, el fenómeno pudo ser registrado por los detectores que la Universidad de Huelva opera en el Complejo Astronómico de La Hita y en los observatorios astronómicos de La Sagra (Granada), Sierra Nevada (Granada) y Sevilla.
Estos detectores trabajan en el marco del Proyecto Smart, que tiene como objetivo monitorizar continuamente el cielo con el fin de registrar y estudiar el impacto contra la atmósfera terrestre de rocas procedentes de distintos objetos del Sistema Solar.
El análisis realizado por el investigador responsable del citado proyecto, el profesor José María Madiedo, de la Universidad de Huelva, ha permitido establecer que la bola de fuego se produjo por la entrada en la atmósfera terrestre de un fragmento del cometa Encke a más de cien mil kilómetros por hora.
El impacto tuvo lugar a unos 122 kilómetros de altura sobre el mar Mediterráneo, frente a la costa de Almería, desde donde la bola de fuego avanzó en dirección noroeste, extinguiéndose a unos 63 kilómetros de altura sobre la vertical de la localidad de Pueblo Blanco (Almería).
Aunque las nubes cubrían buena parte del sur y centro del país, no impidieron que la bola de fuego pudiera ser vista desde más de 400 kilómetros de distancia, si bien amortiguaron bastante su brillo en algunas zonas.
En España, estos fenómenos fueron captados por varios observatorios adscritos al Proyecto SMART (siglas en inglés de «Spectroscopy of Meteoroids in the Atmosphere with Robotic Technologies»), cuya finalidad es monitorizar continuamente el cielo para estudiar el impacto contra la atmósfera terrestre de rocas procedentes del espacio.
José María Madiedo, profesor de la Universidad de Huelva e investigador principal de este proyecto ha explicado a ABC que las bolas de fuego registradas están causadas por la entrada en la atmósfera de varios fragmentos o meteoroides procedentes del cometa Encke. Este científico, junto a Miquel Serra-Ricart, investigador del Instituto de Astrofísica de Canarias (IAC), han explicado cuándo esas bolas de fuego suponen un peligro real y con qué frecuencia las rocas espaciales impactan contra la Tierra y se convierten en meteoritos o bien amenazan con destruir ciudades enteras.
Las bolas de fuego observadas las últimas noches forman parte del mismo fenómeno que origina la lluvia de estrellas de las Táuridas. Tal como ha explicado José María Madiedo, esta se origina cuando la Tierra atraviesa un enjambre o corriente de meteoroides –grupo de restos y pequeños fragmentos– formada tras el paso del cometa Encke.
Cada año por las mismas fechas la Tierra atraviesa varios enjambres de meteoroides dejados por distintos cuerpos progenitores, ya sean estos cometas o asteroides. Por ese motivo, cada año ocurren lluvias de estrellas por las mismas fechas –por ejemplo, las Perseidas ocurren en agosto–. Y, por ello también, esta semana han aparecido a la vez varias bolas de fuego.
Hemos dicho que las bolas de fuego provienen de la entrada en la atmósfera de fragmentos o meteoroides procedentes del cometa Encke. Pero, ¿qué son concretamente estos meteoroides?
Se trata de partículas sólidas o rocas que tienen un tamaño que oscila entre unos pocos micrómetros y el metro de diámetro. Proceden de asteroides, cometas, satélites o planetas. Se estima que cada año llegan a nuestro planeta entre 40.000 y 80.000 toneladas de estas partículas.
Estas impactan contra nuestra atmósfera a velocidades comprendidas entre los 20 y los 72 km/s (es decir, de 72.000 a 259.200 km/h) de forma que la fricción dispara su temperatura hasta llegar a los miles de grados centígrados.
Esto provoca que entren en ignición y que se desencadenen una serie de procesos químicos y físicos, como la ablación térmica, a alturas que suelen estar entre los 80 y 100 kilómetros. Es entonces cuando se generan unas estelas luminosas que reciben el nombre de meteoros, y que también se conocen con el nombre de estrellas fugaces.
La mayoría de los meteoros son causados por meteoroides que tienen tamaños similares a los de una piedra o un grano de arena, y que pesan menos de uno o dos gramos.
Normalmente, la desintegración de las partículas o la deceleración de los cuerpos más grandes provoca que el proceso de ablación, por el cual emiten su intenso brillo, acabe antes de que toquen tierra.
Cuando en vez de partículas entran fragmentos más grandes, a veces auténticas rocas y bloques, el brillo en el cielo es mucho mayor. Si este supera al del planeta Venus, por la noche, el fenómeno recibe el nombre de bola de fuego. Si el objeto estalla en el aire, pasa a llamarse bólido.
Si el meteoroide es lo suficientemente grande y consigue sobrevivir a su paso por la atmósfera, éste impacta con la Tierra en forma de meteorito.
Curiosamente, el proceso de frenado en la atmósfera permite que la mayoría de los meteoritos llegue al suelo a temperatura ambiente. Esto puede ocurrir incluso con los meteoritos más pesados, por lo que muchas veces no generan grandes cráteres de impacto.
Hay que tener en cuenta que un fragmento de tamaño importante puede atravesar todas estas etapas. Algo así pasó con el bólido de Cheliábinsk. El 15 de febrero de 2013 una roca de 17 a 20 metros de diámetro atravesó la atmósfera a unos 19 km/s, y estalló a 30 kilómetros de altura, liberando una energía equivalente a 500 kilotones, unas 30 veces más que la bomba atómica de Hiroshima. No pudo ser detectada con antelación a causa de su «pequeño» tamaño.
La explosión generó un brillo mayor que el del Sol y una potente onda de choque que dañó puertas, ventanas y cristales de multitud de edificios. Resultaron heridas leves unas 1.500 personas y se recuperaron unos 5.000 kilogramos de materiales procedentes del bólido. Entre otros, se localizó un pedazo de 650 kilogramos en el fondo del lago Chebarku.
José María Madiedo ha señalado que «en la mayoría de los casos se desconoce cuál es el cuerpo progenitor –cometa o asteroide– de los meteoroides». Muchas de estas partículas, señala, quedan en el espacio y se ven muy influidas por la gravedad de Júpiter –el planeta que acumula el 70% de la masa de todos los planetas del Sistema Solar–. Por ello resulta muy difícil trazar su origen.
Cada día ocurren miles de meteoros y bolas de fuego en la atmósfera, sobre todo en las regiones deshabitadas y en los océanos, que cubren la mayor extensión del planeta. Muchos de estos quedan enmascarados por la luz del día. Siempre se cumple la regla de que cuanto mayores son los meteoroides más infrecuentes resultan.
José María Madiedo ha dicho que estudiar los meteoros tiene interés porque «al analizarlos podemos averiguar la composición que tienen los cuerpos del Sistema Solar de los que proceden». Ha añadido que «también permite establecer las condiciones fisicoquímicas que existían en la nube de material a partir de la cual se formó nuestro sistema planetario». Además, estudiar los impactos «nos ayuda a hacernos una idea de cuál es el peligro de que caigan objetos mayores».
Su estudio también proporciona valiosas claves sobre los mecanismos químicos que condujeron a aparición de la vida en nuestro planeta, dado que se piensa que los meteoroides aportaron parte de las moléculas necesarias para que ésta pudiese surgir.
Tal como ha explicado Miquel Serra-Ricart, «la mayoría de los objetos mayores de un kilómetro ya se han detectado», pero «todavía desconocemos muchos cuyo tamaño está entre el kilómetro y los 150 metros». Estos son lo suficientemente pequeños como para ser difíciles de detectar pero a la vez tienen un poder destructivo muy considerable.
Según ha dicho, los cercanos al kilómetro podrían provocar daños a escala planetaria, pero son más infrecuentes. Los situados en las decenas y los cientos de metros, sin embargo, son más abundantes, y están en la categoría de «city killers», ya que tienen la capacidad de arrasar ciudades enteras si caen en el lugar adecuado.
En estos casos, «lo que realmente hace daño es la onda de presión que genera. Es una bomba, que presiona de forma súbita el aire», ha explicado Serra-Ricart.
Pero, ¿qué hay ahí fuera? En la actualidad se considera que solo se conocen el uno por ciento de todos los asteroides del Sistema Solar, aunque por suerte ya se ha descubierto el 90 por ciento de los cuerpos más masivos. En total, hasta septiembre de 2018 se han descubierto 779.736 asteroides, y cada mes se descubren 2.000 más.
La situación cambia cuando algunos de estos asteroides y cometas son empujados por la gravedad del Sol y se acercan a menos de 1,3 Unidades Astronómicas (UAs) de la Tierra (una UA es la distancia que hay entre el Sol y nuestro planeta). Entonces entran en la categoría de «Near Earth Object» (NEO), u objetos próximos a la Tierra. Hasta enero de 2018 se conocían 18.819 NEOs, y cada mes se detectan unos 150 más.
Los asteroides que miden más de 150 metros de largo y se acercan a 7,5 millones de kilómetros de la Tierra (en comparación, la distancia mínima a la que se encuentran la Tierra y Marte es de 53 millones de kilómetros), se convierten en asteroides potencialmente peligrosos (PHAs, en inglés). Por término medio, solo el cuatro por ciento de los NEOs son además objetos potencialmente peligrosos. Hasta septiembre de 2018 se conocían 1.929 PHAs.
Por si acaso, los astrónomos están en todo momento rastreando el cielo en busca de objetos brillantes que pudieran ser asteroides o cometas con rumbo a la Tierra. Este trabajo es desempeñado por múltiples observatorios terrestres y espaciales, como Pan-STARRS 1, Catalina Sky Survey, Spacewatch , LINEAR, De Cam Neo Survey o NEOWISE.
Además, los científicos tratan de asesorar a los gobiernos para prepararse en caso de grandes contingencias.
Sin embargo, según Serra-Ricart, con los medios actuales no se puede predecir la mayoría de los impactos de objetos de decenas de metros, aunque por suerte se trate de eventos poco frecuentes.
En cuanto a los mayores impactos, provocados por rocas de un kilómetro de largo, cree que actualmente no se podría hacer nada para evitarlo. Sin embargo, aboga por resolver problemas terrenales, como redistribuir la riqueza y combatir la pobreza, antes que hacer las inversiones que harían falta para evitarlo. «Sí que apostaría por invertir más recursos en tener controlada a la población de NEOs», ha opinado.
En ese momento, la NASA prepara la misión DART («Double Asteroid Redirection Test») para probar la tecnología de los impactadores cinéticos, cuyo fin es desviar asteroides de su trayectoria para evitar choques contra la Tierra.
Los derechos de inclusión, el gran tema de las elecciones del 2021: IEPC
Parlamento Juvenil 2019, espacio para el análisis y participación democrática
Candidato del PRI al Gobierno de Zacatecas y su esposa ocultan compra de residencias en Miami